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Model of Image Representation
in Visual Cortex
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Abstraci—Retinal ganglion cells represent the visual image with a
spatial code, in which each cell conveys information about a small re-
gion in the image. In contrast, cells of primary visual eoriex employ a
hybrid space-frequency code in which cach cell conveys information
about 2 region that is local in space, spatial frequency, and orientation,
Despite the presumable importance of this transformation, we lack any
comprehensive notion of how it occurs. Here we deseribe a mathemat-
ical madel for this transformation. The hexagonal orthegenal-oriented
quadrature pyramid (HOP) transform, which operates on a hexagonal
input lattice, employs basis functions that are orthogonal, self-similar,
and localized in space, spatial frequency, orientation, and phase, The
basis functions, which are generated from seven basic types through a
recursive process, form an image code of the pyvamid type. The seven
basis functions, six bandpass and one low-pass, occupy a point and a
hexagon of six nearest neighbors on a hexagonal sample lattice. The
six bandpass basis functions consist of three with even symmetry, and
three with odd symmetry, The three even kernels are rotations of 0,
60, and 120° of a common kernel; likewise for the three odd kernels.
At the lowest level, the inputs are image samples. At each higher level,
the input lattice is provided by the low-pass coefficients computed at
the previous level, Al each level, the ontput is subsampled in such a
way as to yvield a new hexagonal lattice with a spacing V7 larger than
the previous level, so that the aumber of coeflicients is reduced by a
tactor of seven at each level. In the biological model, the input lattice
is the retinal ganglion cell array. The resulting scheme provides a com-
pact, efficient code of the image and penerates receptive fields that re-
semble those of the primary visual cortex.

INTRODUCTION

ARIOUS roles have been proposed for the neurons

of primary visual cortex. A prominent idea, stated
mast clearly by Barlow [1], is that each cell is a detector
of a specific image feature. A more recent, and perhaps
less exciting view, is that cach cell has littie meaning on
its own, but that the ensemble of cells serves to represent
the’ visual image. However, there are on the order of a
hillion cells in human primary visual cortex [2], and il
seems odd to devote this number to a job done quite well
by the two million or so ganglion cclls of the retina, so
this simple representational view must be tempered by the
presumption that the particular representation employed
by the cortex, or by a particular cortical area [3], has some
tunctional advantage. In this paper, we describe some of
the fundamental properties of the cortical representation
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of visual imagery, and present a particular mathematical
image transform that also exhibits many of these proper-
tics. This mathematical formulation may help in under-
standing the construction and utility of the representation
used by primary visual cortex.

As we move from retina to primary visual coriex, a fun-
damental change takes place in the nature of the represen-
tation of visual information, In the retina, cach gunglion
cell effectively represents a small region in the image.
While the receptive field surround plays an important role
in adaptive gain control, it is the narrow center, often re-
ceiving input from only one cone, that effectively samples
the image. In frequency terms, each cell has a broad band-
width that is essentially cqual to that of the organism as a
wholc. In the cortex, things are strikingly different. Re-
ceptive fields arc narrow-band and oriented, and may dif-
fer markedly from onc another in their orientation, size,
and peak frequency. This means that we have gone from
a single representation by relatively homogencous cells,
to multiple representations by distinct populations of cells
differing in orientation and spatial frequency.

Despite the presumable importance of these transfor-
mations, we lack any comprehensive notion of how they
occur. Here we will describe a particular scheme for
achieving this sort of transformation which exhibits many
of the properties of the true cortical transform. First we
review in more detail the propertics of cortical neurons.

AsPECTS OF STRIaTE CORTLX

After capture by the receptors of the eye, the visual im-
age undergoes a sequence of transformations in the retina
and visual brain. These transformations take place in dis-
tinct sets of cells. Certain sets lic in a serial arrangement,
so that all the cells of one set reccive their input from
those of the other set, in which casc we may speak of a
stream. The pathway from retina to brain, and among the
various brain areas, is made up of several such streams.
In the primatc, one important strcam is the so-called P
stream |3], which proceeds from the $ retinal ganglion
cells, to the parvocellular layers of the lateral geniculate
nuclcus, and from there primarily to layers 4¢8 and 4a of
the strigte cortex.

At each stage of this strcam, recordings have been made
which characterize the relation between the light image
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and the response of the cell, typically in the form of a
receptive field. In the cortex, one observes many different
varictics of spatial receptive field. This suggests a branch-
ing into many streams, cach specialized for some partic-
ular analysis. However, there is one large population of
cells with relatively homogencous properties. These are
the oriented simple cells of V1 |4].

The receptive ficlds of these cells have a number of in-
teresting propertics. First, they exhibit linear spatial sum-
mation [5]. They are local in space, in that the receptive
ficld covers a small, compact region of the complete vi-
sual field [6]. Since each cell captures only a small region,
we suspect that the complete set includes enough cells to
capture the complete visual ficld. The receptive fields are
also local in two-dimensional (2-D) spatial frequency |71,
[8]. This means that the Fourier transform of the receptive
ficld (the spectral receptive field) occupics a small, com-
pact region of the complete spectral visual field (the vis-
ible portion of the 2-D frequency planc). This localization
in 2-D frequency means that the cell responds to a small
band of radial spatial frequencies and a small band of ori-
entations. As in the case of spatial localization, it sug-
gests that the complete set includes cnough different types
to cover the entire spectral visual field. Indeed, since cach
different type of spectral receptive field captures a differ-
ent type of information, this suggests that there must be
cnough of each type to cover the spatial visual field.

The different types of spectral receptive fields may be
divided along several dimensions. The first is orientation.
Each cell responds vigorously only to a range of about
45° 191, which would suggest a minimum of four different
orientations. Bach cell also responds only within a limited
frequency bandwidth. From cell to cell, this bandwidth is
most nearly constant when expressed on a logarithmic
scale, with a mean value of about 1.5 octaves |7, This
constancy indicates an approximate self-similarity of the
various types of receptive field, in the sense that all re-
ceptive fields are approximately magnified and rotated
versions of a single canonical form. This is not cxactly
true, as there are rauther broad distributions of both ori-
entation and octave bandwidlhs, but is a useful working
approximation.

Some evidence also suggests that the simple cells exist
as quadrature pairs, that is, with phases 90° apart [10].
Onc cxample of a quadrature pair are cells with even and
odd symmetry about a central axis of the receptive field.
Quadrature pairs have proven quite usclul in modeling the
behavior of direction selective cells 1117, [12].

In our effort to understand these biological (ransfor-
mations of the visual image, we have made use of con-
cepts from the mathematics of image coding. Some of
these concepts are reviewed in the following section.

Imacr Cobis
The discipline of image coding provides some uscful
cxamples ol image transforms that resemble biological
image transforms in various ways. In a digital image
transform, the sct of pixel values are converted into a sct

ot coetficients. In the brological analog, the responsc ot a
single ccll corresponds to a single coeflicient. Likewise
the receptive ficld is analogous to the kemel of weights
that specify how pixel values are combined to form coef-
ficients.

Tanimoto and Pavlidis [13] introduced the notion of an
image pyramid. In this sort of transform, the image is fil-
tered into several bands of resolution, and then cach band
is subsampled in proportion to resolution. At the bottom
of the pyramid is a high-resolution image with many coef-
ficients, and at the top is a low resolution image with few
coefficients. While Tamimoto and Pavlidis used simple
averaging of adjacent pixels to reduce resolution, Burt in-
troduced a more ‘‘biological’’ Gaussian filter between
each level of the pyramid [14], [15], and Watson [16]
proposed ideal low-pass filtcring between each level. All
three of the preceding transforms are constructed in such
a way that they arc complete (are invertible and thus per-
mit exact reconstruction of the image), but in cach there
are 4 /3 more coeflicients than pixels. All three produce
“receptive fields’” that arc approximately bandpass and
self-similar. None, however, partition the image by orni-
entation.

An oriented pyramid called the CORTEX transform was
introduced by Watson |17]. The reccptive liclds have
bandwidths of 1 octave in frequency and 45° in orienta-
tion. The transform is complete, but expands the image
code by 16/3. A later version provides almost exact re-
construction, and expands the code by only 4 /3 |18].

Another set of codes that partition by oricntation are
quadrature mirror filter (QMF) codes [19]-122]. These
codes adopt special constraints on the sampling functions
(receptive ficlds) and reconstruction functions to cnsure
that sampling artifacts generated in one band are canceled
by those in the others. They are complete and produce
code the same size as the image. However, they have the
distinctly nonbiological feature of partitioning orientation
into three bands, horizontals, verticals, and both diago-
nals (oblique right and oblique left). More recently, Adel-
son, Simoncelli, and Hingorani |23] have derived a QMF
pyramid based on a hexagonal lattice which partitions ori-
entations into three bands of 60°.

The Gabor transform, in which each receptive ficld is
the product of a Gaussian and a sinusoid, is a popular
candidate Tor biological models [24]-[26], in part because
its receptive fields resemble those of the cortex [27], | 281,
|6]. However, in its exact version it docs not lead to self-
similarity. Self-similiar, pyramid-style Gabor transtorms
could presumably be derived.

GoAl. OF THE PRESENT WORK

Our goal here is an image transform that is both math-
ematically coherent and consistent with the properties of
primary visual cortex. Specifically, the transform should
have the following propertics:

pyramid structure
complete (invertible)



DASIS TUNCUONS At are:
local in 2-1> space
local in 2-D frequency
self-similar
odd and even (quadrature pairing)
built Trom known physiological elements
hexagonal lattice
eflicient.

We are interested in transforms that are efficient in the
sense of having a small number of coeflicients. We arc
also interested in codes that can be easily constructed from
the known elements of the striate pathway. In particular,
this means that we must build our cortical receptive fields
from the receptive ficlds of retinal ganglion ceils, Near to
the fovea, ganglion cell receptive fields form an approx-
imately  hexagonal lattice. Therctore, we also seek a
transform that operates on a hexagonal lattice.
Two Staces

The transform we shall describe is most conveniently
thought of as occurring in two stages: the first imple-
mented by the retinal ganglion cclls, and the seccond, a
transform of the “‘neural image’ supplied by the retinal
ganglion cell output. The second stage can be described
as a straightforward digital image transform on a hexag-
onal sample raster, and it may have applications indepen-
dent of its role as a hiological model [29], [30]. For these
rcasons we shall derive it first, and later explore its utility
as a biological model in conjunction with the ganglion
cell transformation.

HixAGoNAL ORTHOGONAL-OQRIENTED QUADRATURE
Pyramin

We consider trunsformations in which cach new coef-
licientis a linear combination of input samples. The linear
combination can be defined by a kernel of weights spec-
ifying the spatial topography of the linear combination,
Here we consider kernels that occupy a point and the hex-
agon of six ncarcst neighbors on a hexagonal lattice.

We derive a set of kernels under the following con-
straints:

1) The kemnels are expressed on a hexagonal sample
lattice.

2) There are seven mutually orthogonal kernels, six
high-pass and one low-pass.

3) Each kernel has seven weights corresponding to a
point and its six nearcst neighbors in the hexagonal lat-
tice.

4) The low-pass kernel has seven equal weights.,

5) Two high-pass kernels have an axis of symmetry
running through the center sample and between samples
on the outer ring (at an angle of 30°).

6) Of these two kernels, one is even about the axis of
symmetry, the other is odd.

7y The remaining four high-pass kernels arc obtained
by rotating the odd and c¢ven kernels by 60 and 120°.

8) Each kernel has a norm (squarc root of sum of
squares of weights) ol one.

DOMES O INCSC CONSLEAINLS Arc SUggesicd by e bIOLog-
ical results cited above. For example, 1), 3), 6), and 7)
induce a hexagonal structure, spatial localization, quad-
rature pairs, and rotational self-similarity. Orthogonality
2) is adopted to makc the transforin easily invertible.
Constraint 8) is attractive mathematically and is irrclevant
with respect to the physiological comparison. With re-
spect to constraint 5), we have determined that there is no
solution when the common axis of symmetry is at 0° (on
the sample lattice of the outer ring). Note also that con-
straints 2) and 4) oblige the even kernels, as well as the
odd, to have zero dc response (the weights sum to 0),
which is approximately true of primate simple cells. Un-
der the symmetry constraints, the kernel coefficients can
be written as shown in Fig. 1.

Ont even and one odd kernel are shown, along with the
low-pass kernel which has seven equal weights 2. The
variables a-g express the symmetry constraints expressed
above. Note that there are two additional even kernels that
arc not shown, produced by rotations of 60 and 120° of
the even kernel. Likewise, there are two additional odd
kernels, so that there are a total of seven distinet kernels,
six high-pass and one low-pass.

The remaining constraints of orthogonality and unit
norm arc expressed in a sct of eight equations in the cight
unknowns a-f. They are

Th = | {low-pass unit norm)

@l 20 4 2T 247 =1

(1)

(even unit norm)
260+ 2fP 4 200 = 1

{ odd unit norm) (3)
a +2b+2c+2d=0

(2)

{even L to low-pass)
a’ + b +d* 4 2be + 20d = 0
(cven L to 30° self-rotation)

@ + 2bc + 2bd + 2¢d = 0

(even L to 60° scli-rotation) (6)
¢t + gt — 2ef - 2fe =0

(odd L to 60° self-rotation) (7)
2eg — 2ef — 2fg =0

(odd L to 1207 self-rotation ). {(8)

The value of cach coeflicient / in the low-pass kernel is
given dircetly by the unit norm constraint (1)

h=1/7.
Subtracting (5) and (6), and (7) and (8), shows that
bh=d

(9)

(10)
(11)

e = g.



Odd
tiven and odd high-pass kermels, and lowpass kernel, The ablique
line indicates the assumed synmetry axis at 307,

Low-Pass

Lven

Tig. 1.

0Odd

Fig. 2. Values for the two types of even kerel and the odd kernel.

Even (type 8 Lven (type 1)

Fig. 3. Seven kernels represented by graylevels. The Tow-pass kernel is at
the center, the three even kernels are in the upper right, and the three
odd are (o the lower left.

Thus, while not explicitly assumed, we see that both odd
and even filters must also be symmetrical aboul the 120°
ARis.

Further simplifications lead to the [ollowing solution
for the cocllicients of the odd filter:

o I .
¢ =2f = \2/3. (13)

For the even filter, we find
a = 20 = \E/Ti

But two solutions emerge for b and ¢:

—(1+ 71/_\/?__)_

(14)

b= (1 v h)f = A (15)
e 2N
c=(2-h)f= W (16)
and
oy (TN
b= (1 =h)f= W (17)
c= {2 + A= _(Z_i__l_/_ﬁ) (18)

We will call the first solution the even filter of type 0, and

Fig. 4. Tiling the imape with hexagonal neighhorhoods. Two aciphbor-
hoods are shown. This tiling scheme produces a new hexagonal sample
Jaltice that is ¥7 larger, and rotated by 19.1° from the origingl saoiple
latbice.

the second solution, type |. The three high-pass kernels
arc shown in Fig. 2. A complete set ol kernels (using even
type ) is shown in Fig. 3. The high-pass kernels are ar-
ranged about the low-pass kernel at the conter,

SUBSAMPLING

Application of (he seven kernels to a neighborhood of
seven pixels will yield seven coeflicients. Since the ker-
nels are orthogonal, the seven coeflicients arc a complete
representation of the seven pixel image neighborhood. By
tiling the plane with hexagonal ncighborhoods, a com-
plete image can be transformed. The coefficients pro-
duced by cach distinet type of kernel may be regarded as
a subimage, and cach of the scven subimages may also
be regarded as a filiered and subsampled version of the
original image. Since cach kernel consumes seven pixels
and yiclds one cocllicient, cach subimage has onc scventh
the number of pixels in the original image. The manner
in which the image may be tiled and subsampled is illus-
trated in Fig. 4.

Tur PYRAMID

One virtue of the scheme we have described is that it
leads directly o a pyramid structure. The hexagonal im-
age sample lattice is tiled with hexagons with unit sides.
Each of the seven kernels is applied in cach hexagon,
yiclding seven subimages, six high-pass and one low-pass,
cach with one seventh as many samples as the original.
The six high-pass subimages form level 0 of the pyramid.
The next level is created by applying the seven kernels (o
the low-pass subimage. This yields seven new subimages,
six high-pass and one low-pass, cach a factor of seven
smaller than the subimages at level 0. This process is re-
peated until a level is reached at which cach subimage has
onc sample.

This recursive process is illustrated in Fig, 5, The ver-
tices and centers of the smallest hexagons define the input
sample lattice. These smallest hexagons show a tiling of
the image by the level 0 kernels. Their centers locate the
samples of the level 0 subimages. The next larger hexa-
sons tile the level O subimapes, and their centers define
the sample locations for the level | subimages. Their ver-
tices (and centers) show where the weights are applied to
recursively transform cach low-pass subimage. Higher
levels are represented by still larper hexagons.



Fig. 5. Construction of the hexagonal pyramid. The image sample lattice
is piven by the vertices and centers of (he smallest hexagons, The hex-
agons indicate the pooling neiphborheods for the next fevel. This hex-
agenal fractal was constructed by first creating the largest hexagon, then
Macing a cach ol its vetlices a hexagon rotated by tan (\ﬁ/ﬁ) =
1917 and scaled by I/J?. The same procedure is then applicd 10 cach
ot the smaller hexagons, down 10 some tesminating Jevel. The imape
sumple latlice is then a linite-extent periodie sequence with a hexaponal
sample uttice defined hy the vertices of the smallest hexagons, The sam
ple huttice has 7° points, the same as a rectangular lattice of 343%. The
perimeter of this “Gosper flake™™ s a “'Koch curve™ with a fractal di-
mension of log 3 /log VT 119 [31). The program used Lo create this
image is piven in Appendix 1.

While an image shape like that in Fig. 3 is very natural
for this code, any shape that is one period of a hexago-
nally periodic sequence can be exactly encoded if the
number of samples is equal to a power of seven. This
includes, for example, a parallelogram with sides whose
length in samples is a power of scven. Below we show
how the code may be applicd (0 a conventional rectan-
gular image.

Pyramity KERNIELS

While we have described the construction of the levels
ol the pyramid as a recursive transformation of the low-
pass subimage, we can also view cach subimage as the
result of dircet application ol a kernel to the image at ap-
propriate sample points. As we move higher in the pyra-
mid, the kernels are constructed from the low-pass ker-
nels of the previous level. This yields the kernels shown
in Fig. 6.

KURNEL SPECTRA

One of our objectives was 1o creafe receptive ficlds that
were local in frequency, that is, somewhat narrow-band
and orienied. As continuous functions, the kernel spectra
arc casily derived. Each kernel consists of a central im-
pulsc at the origin, surrounded by three pairs of symmet-
ric (or antisynunetric) impulses at angles of 0, 60, and
120°. Each pair of symmetric impulses transforms into a
sinusoid oriented at the angle of the impulsc pair, while

Inc impulse at the center transtorms nto a constant. 'The
complete transform is thus a constant plus three sinusoids
at angles of 0, 60, and 120°. The constant is the value of
the central coefficient, while each sinusoid has an ampli-
tude twice that of the corresponding cocilicient. For the
cven kernels, the sinusoids are in cosine phase: for the
odd kernels, they arc in sine phase.

To picture the spectra Tor the discrete, finite cxtent casc
we show the discrete Fourier transform (DFT) of the ker-
ncls in Fig. 6. This was donc by computing cach kernel
in a squarc image, regarded as skewed coordinates of a
hexagonal raster, computing the DFT of this image, and
apptopriately deskewing the DFT. As shown in Fig. 7,
the spectra computed in this way are oriented and band-
pass, as desired.

AXES OF SYMMIETRY AND ORIENTATION
We can deline the grientation of a kernel as the orien-
tation of the peak of the frequency spectrum, that is, the
orientation of a sinusoidal input at which the kernel gives
the largest responsc. An interesting feature of the result-
ing kerneis is that while the axis of symmetry was fixed
at 30°, the orientation of the type 0 cven kernel (shown
in Fig. 7) is actually orthogonal to this axis at 120°. This
placcs its orientation axis on the hexagonal lattice. In con-
trast, the orientation of the type | even kernel and the odd
kermnel are equal to the initial axis of symmetry at 30°,
Thus, if it is desired to have quadrature pairs with equal

oricntation, the type 1 even kernel must be used.,

SAMPLING MATRICES

The subsampling at each level can be formalized as fol-
lows (see |32] for a general discussion of nonrectangular
sampling). The original hexagonal sampling lattice can be
represented by a sampling matrix H:
1 1/2 }

0 V32l

The column vectors of this matrix map from sample to
sample, and the location of any sample can be expressed
as x = (&, y),

11:‘ (19)

x = Hr (20)

where ris an integer vector. Let 8, be the sampling matrix
at level 1. Since the samples at cach level must be a subset
of those at the previous level, the column vectors of §, |
must be integer lincar combinations of the column veetors
ot §,. Thus,

S, =S M (21)
where M is an integer matrix. Furthermore, the columns
of S, must be V7 longer than the columns of 8, (cor-
responding to the increasing radii of the hexagons at cach
successive level). And finally, because the determinant of
a sampling matrix determines the factor by which the den-
sity of samples is reduced, we know that

det (M) = 7. (22)



Fig. 6. Pyramid kernels. The seven kernels are nubered 4 {Jow-pass), -

3 (even high-passy and 4-6 (odd high-pass). For this figure, the kernels
were first compuoted on a 49 X 49 pixel square, regarded as skewed co-
ordinates ol a hexagonal lattice. The squure was then deskewed into a
parallelogram, which is an alternate tiling of a hexagonally periodic im-
age (sce below). Even kernels are of type 0. Bright regions are pusitive,
dark regions are negative, and gray corresponds to 0. ‘The central kernel
is shown for cach type and level. At level 4 there s only one kernel of
each type and it wraps around to fill the entire image.

__2

Hig. 7. Spectra of pyramid kernel

" ‘Kemnelnumber =<

Rk

The origin is at the center ol cach

figure. Bright regions ure positive, dark regions are negative, and gray

corresponds to 0,

Two matrices which satisty these conditions are

2 -1
Mo = } ! 3‘ (23)
| I

These penerate the only two possible subsamplings from
onc level to the next. Then 8, can be constructed in var-
ious ways, the three most obvious being

S, = HM; (25)

and

— HM' (26)

H

and

S, = HM;M, MM, - (27)

(n terms).

The first scheme (used in Fig. 5) causes a rotation of tan™"'
(\/3/5) = 19.1° in the sample lattice at each level, as
does the sccond scheme, while the third scheme alternates
between rotations of 19.1 and —19.1°.

SkEwED COORDINATES

It 1s well known that hexagonal samples on a Cartesian
plane can also be viewed as rectangular coordinates on a
coordinate frame in which one axis 1s skewed by 60° {Fig.
8(a)] 133], [34]. In this coordinate scheme, the sampling
matrices are even simpler. They are the same as above
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X X,
{a) (b)
Fig. 8. (a) Hexagonad latbee represented] as skewed rectangular coordi-
nates. (h) Deskewed rectangular coordinates. The hexagon is distorted
into an oblique Tozenge.

1(25)-4(27)] except that we drop the matrix H from each
cxpression. :

This leads to a natural method for application of this
coding scheme to conventional rectangular images. When
the skewed coordinates are “‘deskewed’” [Fig. 8(b)], the
hexagon is distorted into an oblique lozenge. The orthog-
onal pyramid may then be constructed using these loz-
enges as the shape for each kernel. The kernels will no
longer be rotationally symmetric, but for some purposes
this may be unimportant. As before, exact coding will be
possible so long as the sides of the rectangle are a power
of seven.

Reconstruction of an image from the transform coeffi-
cicnts is straightforward and is the inverse of the opera-
tions used Lo create the trie Torm. First, the highest level
of the ayramid (level n) s inverse transformed. Each coef-
ficient is replaced by a set of seven pixels, produced by
multiplying the coefficient and the corresponding kernel.
The subimages created in this way from cach of the seven
subimages are added together to form a low-pass sub-
image at level n — 1. This process is then repeated for
-cach level until the image pixels are produced.

The left side of Fig. 9 shows an original image of 7% x
7' = 343% pixcls, with zcro-order cntropy of 7.45
bits /pixel. This image has been transformed by the pre-
ceding scheme, The coclicients of cach transform sub-
image have been quantized using a nonlincar quantizer
that exploits the masking property of human vision 18],
The severity of quantization decreases with level in the
pyramid (high-spatial frequencies are more severely
quantized). The image is (hen reconstructed from the
quantized cocflicients as described above. The right side
of Fig, 8 shows the result when quantization is set so as
to yield a coeflicient entropy of 0.96 bits /pixel.

A detailed discussion of the coding efficiency and com-
putational complexity of this transform is beyond the
scope of this paper, but we note that the recursive com-
putation of the transform is about 6N /7 faster than direct
application of the equivalent kernels where N is the num-
ber of layers, and the number of image pixels is 7",

Bioroacical. Imace ConING

As noted carlicr, the transformation from image to cor-
tical representation may be partitioned into two stages:
the first between image and retinal ganglion cell response
array, and the second between this retinal neural image
and the cortical neural image. In the preceding sections
we developed the sccond stage, here we add the first stage.

UHIGINAL

7.45 bits/pix

0.96 bits/pix

Fig. 9. Original image and image coded wsing the hexagonal orthogonal
oriented guadratore pyramid,

Retinal ganglion cell receptive ficlds have a center-sur-
round arrangement, and are described well by a differ-
cnce-of-Gaussians (DOG) [35]. Near to the fovea, the
center is evidently driven by a single cone. Since the cones
are in an approximately hexagonal lattice, this means that
ganglion cell receptive ficlds also form a bexagonal lat-
tice. Each retinal ganglion cell may be represented by a
DOG function with a center radius of w. The receptive
ficlds arc arranged in a hexagonal lattice with sample
spacing of A. Here we assume w = A (Fig. 10), which is
approximately true of retinal cells [36]. 'The output of this
hexagonal ganglion cell lattice provides the input to the
orthogonal transform described above. The coctlicients of
the resulting transform then represent the responses of hy-
pothetical cortical cells.

The receptive fields of the complete transform are lin-
ear combinations of the retinal DOG receptive fields. At
level 0, they arc produced by simply weighting each of
the seven DOG’s in the minimal ncighborhood by the
weights in the appropriate kernel. An example receptive
ficld is shown in Fig. 11, It is a patch of clongated parallel
antagonistic regions, resembling the receptive fields of
striate simple cells.
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Fig, 10, Nexagonal lattice with spacing X, Each circle represents the cen-
ter Gaussiun ol a retinal ganglion cell receptive field. On the right, a
neighborhood of seven cells is shown.

Fig. 11. Cortical receptive field produced by linear combination of seven
retinal ganglion cell receptive fields.

In general, the receptive field at any level is produced
by convolving the corresponding kernel (Fig. 6) with the
DOG function. In the frequency domain, this corresponds
to multiplying each kernel spectrum (Fig. 7) by the DOG
spectrum. Examples of receptive fields and spectra are
shown in Fig. 12. As we move up in the pyramid, the
spatial receptive field becomes larger and the spectral re-
ceptive ficld smaller. Each spectral receptive field ap-
proximates a pair of blobs on cither side of the origin, in
agreement with the spectral receptive fields of oriented
cortical simple cells. The orientation bandwidth of ecach
receptive field is 60°, and the frequency bandwidth is
about 1.5 octaves, in rough agreement with biological
values.

D1SCUSSION

At this point we review our progress in attaining the
goals sct out at the start of this paper. We have derived
an image transform which produces coeflicients that are
compact and local in 2-D space and in 2-D spatial fre-
quency, with approximately correct frequency and orien-
tation bandwidths, The receptive fields come in various
sizes and oricntations, and have approximate self-similar-
ity (the self-similarity is exact in the second stage trans-
form). The receptive (iclds have both odd and even forms.
Because the second stage transform is orthogonal, the
coeflicients are a complete representation of the image
provided by the retinal ganglion cells. The representation
is cllicient in the sensc that the number of cocflicients is
at its theoretical minimum. And the coeflicients form a
pyramid structure. We have therefore satisfied all of our
goals, but we conclude by noting certain defects of this
scheme as a model of cortical image coding.

Fig. 12. Spatial and spectral receptive fields of even type O cells at four
levels of the pyramid.

First, the frequency tuning functions of our filters are
oriented in the sense of having a strongest response at onc
orientation, but they have a second, smaller lobe of re-
sponse (of opposite sign) at the orthogonal oricntation.
Two-dimensional frequency tuning functions in cortical
cells occasionally show such secondary lobes [9], but they
do not appear to be common. Second, the units we de-
scribe change in size by 7 at each level, which might
yicld rather fewer different scales than are commonly sup-
posed. Third, the 19.1° rotation of the axis of orientation
at cach scale reduces the degree of rotation invariance of
the code, although rotational invariance is not known to
hold for the cortical code. Fourth, the tuning functions
produced by our scheme are broader in orientation than in
spatial frequency, while cortical cells appear to have nar-
rower tuning in orientation than in frequency [37], |6].
Fifth, tangential penetrations of striate cortex sometimes
produce long sequences of cells whaose orientations in-
crease monotonically in steps considerably smaller than

the 60° suggested by the present scheme [38). Many of

the apparent defects of the preseni scheme may be reme-
dicd by relatively minor modifications, such as larger and
nonorthogonal kernels [30], which we hope to explore in
the future.

Finally, the precise crystaliine structure of this code is
clearly different from the biological heterogeneity of vi-
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a scheme like ours may be the canonical form from which
the actual cortex is @ developmental perturbation. These
issues arc discussed at greater length elsewhere [30]. Per-
haps the best summary is that while this scheme may not
describe exactly the cortical encoding architecture, it is
an example of the form such an architecture might take.
It is a means of expressing our understanding of the sys-
tem, and bring into focus those aspects of the system about
which we are ignorant. The particular structure we have
proposed greatly simplifies the computation of the code
and its inversion, providing an efficient method of image
compression, progressive transmission, and a cortex-like
processor for artificial vision systems.

APPENDIX
The following is a program in the Postscript language

to draw the pyramid in Fig. 5. The number of levels drawn
is determined by the variable maxdepth. On an Apple laser
printer, a maxdepth of three takes about 2 min to print,
Hach greater depth will take a factor of seven longer.

fdepth O del

fmaxdepth 3 def

flatticeRot 3 sqrt § atan def

froon7 17 sqrt div def

fnegrot | /latticeRot TatticeRot neg def'} def

fdawn {/depth depth |add def} def

fup {/depth depth | sub del') det
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